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Abstract

Let P be a set of n points in Rd, and let ε, ψ ∈ (0, 1) be parameters. Here, we
consider the task of constructing a (1 + ε)-spanner for P , where every edge might fail
(independently) with probability 1 − ψ. For example, for ψ = 0.1, about 90% of the
edges of the graph fail. Nevertheless, we show how to construct a spanner that survives
such a catastrophe with near linear number of edges.

The measure of reliability of the graph constructed is how many pairs of vertices lose
(1+ ε)-connectivity. Surprisingly, despite the spanner constructed being of near linear
size, the number of failed pairs is close to the number of failed pairs if the underlying
graph was a clique.

Specifically, we show how to construct such an exact dependable spanner in one
dimension of size O(nψ log n), which is optimal. Next, we build an (1 + ε)-spanners for

a set P ⊆ Rd of n points, of size O(Cn log n), where C ≈ 1/
(
εdψ4/3

)
. Surprisingly,

these new spanners also have the property that almost all pairs of vertices have a
≤ 4-hop paths between them realizing this short path.

1. Introduction

1.1. Background

Spanners. Given a weighted finite graph M over a set of points P (if M is a finite metric,
then M is a clique), a t-spanner is a subgraph G ⊆ M, such that for all u, v ∈ P , we have
that dM(u, v) ≤ dG(u, v) ≤ t ·dM(u, v), where dM and dG denote the shortest path length
in M and G, respectively. In particular, the weight of an edge uv ∈ E(G) is dM(u, v). A lot
of work went into designing and contracting spanners with various properties. The main goal
in spanner constructions is to have small size, that is, to use as few edges as possible. Other
properties include low degrees [ ABC+08 ,  CC10 ,  Smi06 ], low weight [ BCF+10 ,  GLN02 ], low
diameter [ AMS94 ,  AMS99 ], or resistance to failures. See [ NS07 ].

Fault tolerant spanners. A desired property of spanner is fault tolerance [ LNS98 ,  LNS02 ,
 Luk99 ]. A graph G = (P,E) is an r-fault tolerant t-spanner if for any set B of failed vertices
with |B| ≤ r, the graph G \ B is still a t-spanner. The disadvantage of r-fault tolerance is
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that each vertex must have degree at least r + 1, otherwise the vertex can be isolated by
deleting its neighbors. Therefore, the graph has size at least Ω(rn). In particular, for r large
the size of the fault-tolerant spanner is prohibitive.

Region fault tolerant spanners. Abam et al. [ ABFG09 ] showed that one can build a
geometric spanner with near linear number of edges, so that if the deleted set are all the
points belonging to a convex region (they also delete the edges intersecting this region), then
the residual graph is still a spanner for the remaining points.

Vertex robustness. For a function f : N −→ R+ a t-spanner G is f -robust [ BDMS13 ], if
for any set of failed points B there is an extended set B+ (that contains B) with size at most
f(|B|) such that the residual graph G \B has a t-path for any pair of points u, v ∈ P \B+.
The function f controls the robustness of the graph – the slower the function grows the more
robust the graph is. For ϑ ∈ (0, 1), a spanner that is f -robust with f(k) = (1 + ϑ)k is a
ϑ-reliable spanner [  BHO20 ].

Reliable spanners for unreliable vertices. Buchin et al. [ BHO20 ] showed a construc-
tion of reliable exact spanners of size Õ(n log n) in one dimension, and of reliable (1 + ε)-
spanners of size Õ

(
n log n loglog6n

)
in higher dimensions (the constant in the Õ depends on

the dimension, ε, and the reliability parameter ϑ). An alternative construction, with slightly
worse bounds, was given by Bose et al. [ BCDM18 ]. Up to polynomial factors in log log n, this
matches a lower bound of Bose et al. [ BDMS13 ]. Buchin et al. [ BHO22 ] showed that the
size of the construction can be improved to Õ(n log log

3 n log log log n) if the attacker choices
(i.e., the failed set of vertices) is oblivious the randomized construction of the spanner. Some
of these constructions use LSOs, described next.

Locality sensitive orderings. The concept of locality-sensitive orderings (LSO) was in-
troduced by Chan et al. [ CHJ20 ]. Informally, they showed that Rd can be multi-embedded
into the real line, such that distances are roughly preserved.

Definition 1.1. For a pair of points u, v ∈ H = [0, 1)d, an order σ over the points of H is
ε-local , for ε ∈ (0, 1), if

σ(u, v) ⊆ b(u, εℓ) ∪ b(v, εℓ), where ℓ = ∥uv∥ ,
where b(u, r) denotes the ball of radius r centered at u.

Namely, all the points between u and v in σ are in the vicinities of u and v in H.
Surprisingly, Chan et al. showed that one can compute such a “universal” set of orderings

Π (i.e., a set of locality-sensitive orderings), of size O(Ed log E), where E = 1/ε. This set
of orderings can be easily computed, and computing the order between any two points
according to a specified order (in the set) can be done quickly. Using LSOs some problems
in d dimensions, are reduced to a collection of problems in one dimension. Recently, Gao
and Har-Peled [ GH24 ] showed improved construction of LSOs of size O(Ed−1 log E), but
unfortunately, these LSOs have slightly weaker properties.
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1.2. Our results

If one is interested in building near linear size spanners, that survive massive edge failure
(i.e., constant fraction of the edges), then this seems hopeless. Indeed, one can easily isolate
(completely) a large fraction of the vertices of the graph by deleting the edges attached to
them. One can interpret an edge failure as the failure of both its endpoints, and use one of
the constructions of reliable spanners mentioned above, but this seems wasteful – it assigns
an edge failure the same status as a failure of two vertices, which seems excessive.

Here, we initiate the study of how to construct such spanners that can survive massive
edge failure. Specifically, we imagine that given the constructed spanner graph G, and a
parameter ψ ∈ (0, 1), the edge failures are random and independent. Specifically, an edge
fail with probability 1− ψ (i.e., selected to the “surviving” graph with probability ψ). Our
measure of the quality of G, is how many pairs of vertices in G lose their spanning property
in the residual graph. We refer to a graph that can survive such an attack and have “few”
failing pairs as being a dependable spanner , as to distinguish this concept from the reliable
spanners discussed above (which handle vertex failures).

On the optimal deficiency in one dimension. The natural starting point is the com-
plete graph Kn over JnK = {1, . . . , n}. Let ℓ(n, ψ) denote the expected number of pairs of
points in JnK that no longer have a straight path in a graph sampled H ∼ D(Kn, ψ) (i.e.,
such a failed pair i < j has the property that the shortest path in H between i and j is longer
than j − i). The quantity ℓ(n, ψ) is the optimal deficiency , and it provides a lower bound
on the number of such failed pairs in any construction.

In  Section 3 , we study ℓ(n, ψ). A relatively straightforward upper bound of O(n/ψ2)
on the deficiency is provided is  Section 3.1 . To improve the upper bound, we introduce
the concept of a block – the idea is to consider a consecutive interval of vertices, and how
many reachable vertices there are in such a block for a fixed source. One can then argue
that the number of reachable vertices between two consecutive blocks, behaves similarly to
what expansion guarantees in a bipartite expander. This leads to an improved upper bound
ℓ(n, ψ) = O(n

ψ
log 1

ψ
). See  Section 3.2 for details. A surprisingly simple argument then shows

that there is a matching lower bound ℓ(n, ψ) = Ω(n
ψ
log 1

ψ
), see  Lemma 3.7  . Thus, for the

optimal deficiency, we have ℓ(n, ψ) = Θ( n
ψ
log 1

ψ
), see  Theorem 3.8 .

Constructing one dimensional dependable exact spanners. Equipped with the abo-
ve bounds on the optimal deficiency, we prove a lower bound on the number of edges such
a graph must have – specifically, in  Section 4.1  , we show that a dependable exact spanner
on JnK must have Ω(n

ψ
log n) edges, if the deficiency is to be linear in n. A construction of

dependable spanner (matching this lower bound) is natural – one connects all vertices that
are in distance O(n

ψ
log n) from each other along the line. It is not hard to show that this

graph has deficiency that is at most one bigger than the optimal, see  Lemma 4.2 .
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Constructing one dimensional dependable exact spanners with few hops. For
our application of building dependable spanners in higher dimensions, we need spanners
that have few hops (i.e., for almost all pairs there is a straight path with at most 4 edges).
This turns out to be doable, by building a 4-hop spanner on the blocks, and then replacing
each block-edge by a bipartite clique. In the resulting graph, the number of edges increases
to Oψ(n log

2 n), see  Claim 5.3 .
To reduce the number of edges, we replace every bipartite clique with a random bipartite

graph (i.e., a random bipartite expander). This results in a graph with O( n
ψ4/3 log n) edges,

that has the desired 4-hop property. The proof of correctness is a bit more subtle, as one needs
to carefully argue about the underlying expansion. One can improve the dependency on the
number of hops. Specifically,  Theorem 5.11 shows that one can construct a spanner G with
O((n/ψ1+1/(k−1)) log n) edges, such that (in expectation) at most O(n/ψ1+1/(k−1) log(1/ψ))
pairs are not connected via a k hop path in a graph H ∼ D(G, ψ).

Constructing dependable (1 + ε)-spanners in Rd. The last step of converting these
one dimensional dependable spanners to dependable spanners in higher dimensions is by
now standard. Given a point set P , we plug-in the above construction of dependable one-
dimensional spanners into the LSOs provided by the construction of Chan et al. [ CHJ20 ].
Specifically, given a set P of n points in Rd, we show (see  Theorem 6.2 ) a construction of a
graph G with Cn log n edges, such that in expectation at most Cn pairs of points fail to be
(1+ ε)-spanned in the randomly sampled graph H ∼ D(G, ψ), where each edge survives with
probability ψ, and C ≈ O(ε−dp−4/3). Significantly, all the well spanned pairs are connected
via short 4-hop paths.

Paper organization

We start with basic definitions in  Section 2 . We study the optimal deficiency of the clique
over JnK in  Section 3 . We present the one dimensional dependable spanner in  Section 4 . We
modify this construction to have few hops in  Section 5 . The final step of constructing the
dependable spanner in Rd is presented in  Section 6  . Some open problems are described in

 Section 7 .

2. Preliminaries

For two integers α ≤ β, let Jα : βK = {α, α + 1, . . . , β}. Let JnK = J1 : nK = {1, . . . , n},
and let Kn denote the complete graph over JnK. Consider a subgraph G ⊆ Kn. An edge
ij ∈ E(G) has weight |i − j|. Let d(i, j) = dG(i, j) denote the length of the shortest path
in G from i to j. A graph G ⊆ Kn is an exact spanner if for all i, j ∈ JnK we gave that
d(i, j) = |i− j|.

Definition 2.1. For two disjoint sets X, Y , let X ⊗ Y = (X ∪ Y, {xy | x ∈ X, y ∈ Y }) denote
the bipartite clique on X ∪ Y .
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Definition 2.2. Given a graph G = (V,E), and a parameter ψ ∈ [0, 1], let H = (V,E′) be a
subgraph of G, where an edge e ∈ E is included in E′ (independently) with probability ψ. Let
D(G, ψ) denote the resulting distribution over graphs. In particular, let D(n, ψ) = D(Kn, ψ).

The distribution D(n, ψ) is usually denoted by G(n, ψ) in the literature.

Definition 2.3. A path π = i1i2 . . . ik is a straight path between i and j in G, if π is a valid
path in G, i1 = i, ik = j, and i1 < i2 < · · · < ik. It is a t-hop path, if k ≤ t.

Thus G is an exact spanner if there is a straight path in it for all pairs of vertices in
JnK.

Definition 2.4. For a graph G over JnK, let f(G) be the number of pairs i < j, such that there
is no straight path between i and j in G. We refer to f(G) as the deficiency of G. Given a
distribution D over graphs, we use the shorthand f(D) = EG∼D[f(G)]

For a parameter ψ ∈ (0, 1) and a number n, let ℓ(n, ψ) = f(D(n, ψ)) be the optimal
deficiency . For a parameter k, a pair i < j is a k-hop failure if there is no straight path
from i to j with at most k edges (i.e., k hops). Let ℓ≤k(n, ψ) be the expected number of pairs
i < j that are k-hop failures for a graph drawn from D(n, ψ). The quantity ℓ≤k(n, ψ) is the
optimal k-hop deficiency .

The optimal deficiency ℓ(n, ψ) is a lower bound on the (expected) number of pairs with
no straight path in a graph drawn from D(G, ψ), where G is an arbitrary graph over JnK.
The task at hand is to construct a graph G, as sparse as possible, such that f(D(G, ψ)) is
close to ℓ(n, ψ).

3. On the optimal deficiency ℓ(n, ψ)

Consider the clique graph Kn over JnK, where the weight of an edge ij is |i − j|. Here we
investigate the expected number of pairs (i.e., ℓ(n, ψ)) that do not have a straight path in a
graph drawn from D(Kn, ψ).

3.1. A rough upper bound

Lemma 3.1. For two indices i < j, with ∆ = j − i, let ζ(∆) be the probability that there
is no 2-hop straight path between i and j in G ∼ D(Kn, ψ). We have (1 − ψ)∆ ≤ ζ(∆) ≤
(1− ψ)(1− ψ2)∆−1.

Proof: Let q = 1−ψ. Let E be the event that all the ∆ outgoing edges from i to i+1, . . . , j
are deleted. Let E ′ be the symmetric event that all the ∆ incoming edges into j are deleted.
We have that i is disconnected from j if E , or even E ∪ E ′ happens. Observe that P[E ] =
P[E ′] = (1− ψ)∆, and

ζ(∆) ≥ P
[
E ∪ E ′] = P[E ] + P[E ′]− P[E ∩ E ′] = 2(1− ψ)∆ − (1− ψ)2∆−1

= (1− ψ)∆
(
2− (1− ψ)∆−2

)
.
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As for the upper bound, let Π = {itj | i < t < j} be the collection of ∆−1 2-hop straight
path between i and j in Kn. These paths are edge disjoint, and the probability of each one
of them to fail to be realized in G is exactly 1− ψ2. Thus, if there is no straight path from
i to j in G, then the edge ij must be deleted, and so are all the paths of Π. This readily
implies that ζ(∆) ≤ (1− ψ)(1− ψ2)∆−1, as all these paths are disjoint.

Lemma 3.2. We have ℓ(n, ψ) = f(D(n, ψ)) ≤ ℓ≤2(n, ψ) ≤ n/ψ2, see  Definition 2.4 .

Proof: By  Lemma 3.1  , we have that that the expected number of indices j, such that there
is no 2-hop path from a fixed i < j to j is ≤

∑n
∆=1 ζ(∆) ≤

∑n
∆=1(1 − ψ)(1 − ψ2)∆−1 ≤∑∞

∆=0(1− ψ2)∆ ≤ 1
1−(1−ψ2)

= 1
ψ2 .

We prove below a generalization of  Lemma 5.13 for the optimal k-hop deficiency, see
 Lemma 5.13 for details, for any k > 1.

3.2. A tighter upper bound on the deficiency ℓ(n, ψ)

In the following, n and ψ are parameters, and G is a graph sampled from D(n, ψ).
The above analysis suggests that for two vertices to be connected (by a straight path),

with probability ≥ 1 − ψO(1), in G, requires that their distance ∆ has to be at least
c′ψ−2 logψ−1, for some constant c′. The lower bound of  Lemma 3.1 , on the other hand,
implies that ∆ must be at least c′ψ−1 logψ−1. It turns out that the truth is closer to the
lower bound, but proving it requires some work.

To this end, let

b =
c

ψ
(3.1)

(for simplicity, assume b is an integer), where c > 0 is a sufficiently large integer constant.
We divide the vertices JnK into n/b blocks 

1
 , each of size b, where the ith block is Bi =

J(i− 1)b+ 1 : ibK.
A vertex i is reachable if there is a straight path from 1 to i in G. Let R = RG be the

set of all reachable vertices of G. For a block B, let g(B) = |B ∩R|.
The following lemma testifies that (with good probability) the number of reachable ver-

tices grows exponentially between blocks, till it reaches a constant fraction of the size of a
block, and then it remains stable.

Lemma 3.3. Consider two blocks B and B′, where B appears before B′, and g = g(B) > 0.
We have:

(A) P
[
g(B′) ≥ min(2g, b/3)

]
≥ 1/2.

(B) If g ≥ b/3, then P
[
g(B′) ≥ (2/3)b

]
≥ 1/2.

1Again, for simplicity of exposition, we assume b divides n.
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Proof: (A) Let S = B ∩ R, and observe that g = |S|. Consider the set of (directed) edges
E ′ = S × B′, where B′ = Jt : t+ b− 1K. For i = 1, . . . , b, let Xi = 1 ⇐⇒ there is an
incoming edge of E ′ into the vertex t+i−1 in the graph G (this implies that t+i−1 ∈ B′∩R).
We have that γ = P[Xi = 1] = 1− (1− ψ)g. Observe that X1, . . . , Xb are independent, and
their sum Y =

∑
iXi is concentrated, implied by Chernoff’s inequality, as we show next

(i.e.,, the remainder of the proof is by now standard tedium, and the reader might want to
skip it).

If g ≥ 1/ψ, then γ = 1− (1−ψ)g ≥ 1− exp(−pg) ≥ 1− 1
e
≥ 1

2
. Otherwise, if g < 1/ψ,

then (1− ψ)g−1 ≥ (1− 1/g)g−1 ≥ 1/e, and

γ = 1− (1− ψ)g = p
(
1 + (1− ψ) + · · ·+ (1− ψ)g−1

)
≥ p

u

e
,

If g ≥ 1/ψ, then µ = E[Y ] = bγ ≥ b/2, and  Chernoff’s inequality implies that

P[Y ≤ b/3] ≤ P[Y ≤ (1− 1/3)µ] ≤ exp
(
−(1/3)2µ/2

)
≤ exp

(
− b

36

)
= exp

(
− c

36p

)
≪ 1

2
,

for c > 36, as b = c/ψ. If g < 1/ψ, then µ = Mγ ≥ (c/ψ)ψ(g/e) = (c/e)g > 9g, for
c > 36. As such, by  Chernoff’s inequality , we have

P[Y ≤ 2u] ≤ P[Y ≤ (1− 7/9)µ] ≤ exp
(
−(7/9)2µ/2

)
≤ exp(−µ/4) ≤ exp(−2g) ≤ 1

2
,

since g ≥ 1. As g(B′) ≥ Y , this completes the proof of this part.

(B) If g ≥ M/3 = c/(3ψ), then γ ≥ 1 − exp(−pg) = 1 − exp(−c/3) ≥ 1 − exp(−12) ≥
0.99999. Thus, µ ≥ 0.9999b, and by  Chernoff’s inequality , we have

P
[
Y ≤ 2

3
b
]
≤ P

[
Y ≤

(
1− 1

4

)
µ
]
≤ exp

(
− 1

42
· µ
2

)
≤ exp

(
− b

33

)
= exp

(
− c

33p

)
≪ 1

2
,

For i ∈ Jn/bK, let gi = g(Bi), and let prev(i) = argmaxj<i gj be the index of the block
before Bi with maximum reachable vertices.

Definition 3.4. A block Bi is successful if one of the following holds:
(I) i = 1,
(II) gi ≥ b/3, or
(III) for j = prev(i), we have gi ≥ 2gj.

By  Lemma 3.3 , a block Bi, for i > 1, has probability at least half to be successful.
Importantly, whether or not two blocks are successful is an independent event.

Lemma 3.5. Let c5 > 1 be some integer constant. Consider two vertices i and j, such that
j > i+ tc5b, and t > 1 + ⌈log2 b⌉ = Θ(log 1

ψ
) is an integer. The probability that there is no

straight path from i to j in G is at most exp(−t), for c5 sufficiently large.
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Proof: We might as well assume that i = 1. There are at least

ν = c5t− 1 ≥ (c5/2) ⌈log2(1/ψ)⌉

blocks between 1 and j in G: B2, B3, . . . , Bν+1. Let Xi = 1 if the block Bi is successful, and
Xt = 0 otherwise. By  Lemma 3.3 , P[Xi] ≥ 1/2. For Y =

∑
iXi, we have E[Y ] ≥ ν/2. By

Chernoff’s inequality, we have

β1 = P[Y ≤ 2t] ≤ P
[
Y ≤ ν

2
· 4t
ν

]
= P

[
Y ≤

(
1− ν − 4t

ν

)ν
2

]
≤ exp

(
−
(ν − 4t

ν

)2ν

4

)
≤ exp

(
−ν
8

)
≤ exp(−t− 1),

by picking c5 ≥ 16. Thus, with good probability, Y > 2t and there are “many” successful
blocks. Let i1, i2, . . . , iY be the indices of these successful blocks. In particular, for j =
1, 2, . . ., g(ij+1) ≥ 2g(ij), till g(ij) ≥ b/3. Thus, for all j ≥ t ≥ 1 + log2 b, we have that
gij ≥ b/3. Namely, there are at least t “heavy” blocks with at least b/3 reachable vertices,
in each one of them, all of them appearing before j.

The probability that all the edges, from one of these reachable vertices of a heavy block
to j, fail to be selected in G (which was sampled from D(n, ψ)), is at most (1− ψ)b/3. The
probability that all the heavy blocks fail in this way is thus at most

β2 =
(
(1− ψ)b/3

)t ≤ exp

(
−ψb

3
· t
)

= exp

(
−ct

3

)
≤ exp(−t− 1).

Thus, the probability that j is not reachable is at most β1 + β2 ≤ e−t.

Lemma 3.6. We have ℓ(n, ψ) = f(D(n, ψ)) = O
(
(n/ψ) log(1/ψ)

)
, see  Definition 2.4 .

Proof: Fix a vertex i, and let c5 be the constant from  Lemma 3.5 . Let ν = 1+2 ⌈ln(c5b)⌉ =
Θ(log 1

ψ
) and T = ⌈c5b⌉ = ⌈c5c/ψ⌉, we (conservatively) count all the vertices in the range

Ji+ 1 : i+ νT K as not being reachable from i in G. As for bounding the expected number of
unreachable vertices further away, we apply  Lemma 3.5 to the super blocks of size T , where
i > ν, which implies the upper bound

∞∑
t=ν+1

exp(−t)T = c5b
∞∑

t=ν+1

exp(−t) ≤ c5b

(c5b)2
≤ 1.

Namely, in expectation, i can not reach (via a straight path) at most T + 1 = O
(
1
ψ
log 1

ψ

)
vertices. Adding this bound over all i implies the claim.

3.3. The lower bound

Lemma 3.7. We have ℓ(n, ψ) = f(D(n, ψ)) = Ω((n/ψ) log(1/ψ)), see  Definition 2.4 .
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Proof: Assume ψ = 1/u where u is some integer ≥ 8 ≥ e2. The expected number of vertices
of Bi that are reachable by a straight-path from 1 in the range JtK, for t = 1

ψ
ln 1

ψ
≥ 2

ψ
can

be bounded by the expected number of straight paths from 1 to any number in JtK. The
key observation is that there are

(
t−1
k

)
such paths with k hops, and each such a path has

probability exactly ψk to be in the random graph. Indeed, such a k-hop path starting at 1,
involve choosing k indices 1 < i1 < i2 < . . . < ik all in the range J2 : tK ⊆ JtK, where ik is the
destination of the path.

Thus, the expected number of reachable vertices in JtK from 1 is bounded by

t∑
k=0

(
t

k

)
ψk = (1 + ψ)t ≤ exp(ψt) ≤ exp

(
ln

1

ψ

)
=

1

ψ
≤ t

2
.

Namely, at least half the vertices in the range JtK are not reachable from 1 in expectation.
By linearity of expectations, this implies that (in expectation), at least Ω

(
(n/2)(t/2)

)
=

Ω(n
ψ
ln n

ψ
) pairs in JnK are not reachable to each other via a straight path.

3.4. The result

Putting the above together, we get the following result.

Theorem 3.8. Let n > 1 and ψ ∈ (0, 1) be parameters. We have ℓ(n, ψ) = f(D(n, ψ)) =
Θ((n/ψ) log(1/ψ)), see  Definition 2.4 .

4. Constructing exact spanner in 1-dim

Our purpose is to build an exact spanner on JnK, such that its number of edges is near linear,
and its deficiency (i.e., the expected number of failed pairs) is close to the optimal deficiency
(i.e.,  Theorem 3.8 ). It is useful to start with a lower bound.

4.1. A lower bound on the number of failed pairs in a graph

Lemma 4.1. Let G be graph with n vertices, and m ≤ (n/8) log1/(1−ψ) n = Θ(n
ψ
log n) edges.

Let H be a graph randomly sampled from D(G, ψ). Then E[f(H)] ≥ n3/2/8.

Proof: The average degree of G is d = 2m
n

≤ 1
4
log1/(1−ψ) n. Let U be the set of vertices of

V(G) that are of degree ≤ 2d. By Markov’s inequality, we have |U | ≥ n/2. The probability
that all the edges attached to a vertex u ∈ U fail, is at least

(1− ψ)2d = (1− ψ)(log1/(1−ψ) n)/2 =
1√
n
.

Thus, the expected number of isolated vertices in U is at least |U |/
√
n ≥

√
n/2. Each such

isolated vertex induces n − 1 failed pairs. We conclude that the expected number of failed
pairs is at least (

√
n/2)(n− 1)/2 ≥ n3/2/8.
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Thus, for ψ bounded away from 0, any graph with E[f(G)] = O(n) (i.e., only a linear
number of failed pairs), must have Ω(n log n) edges.

4.2. Construction

The construction. The input is a number n, and a parameter ψ ∈ (0, 1). One can safely
assume that ψ ≥ 1/n. Let G be the graph over JnK, where we connected any two vertices
if they are in distance at most l= ⌈(c6/ψ) log n⌉ from each other, where c6 is a sufficiently
large constant.

Lemma 4.2. Let G be the above constructed graph with c6
n
ψ
log n edges. Then, f(D(G, ψ)) ≤

ℓ(n, ψ) + 1, for c6 a sufficiently large constant.

Proof: For any integer i, the induced subgraphs of G and Kn restricted to Ji : i+ LK are
identical (i.e., G is a “local” clique for any such consecutive set of vertices). In particular,
the analysis of  Lemma 3.5 implies that the probability of any two vertices i < j, such that
l/4 < |i − j| < l, to be a failed pair (i.e., there is no straight path from i to j) is at most
(say) 1/n8, by making c6 sufficiently large.

So, let H be a graph sampled from D(G, ψ). A pair i < j is short , if |i − j| ≤ l, an
otherwise it is long . Since G and Kn look the “same” for short pairs, it follows that the
expected number of short failed pairs in H and in a random graph of D(n, ψ) are the same.

As for a long pair i < j, there are at most
(
n
2

)
such pairs. Each such pair can be

connected by a path made out of medium length vertices. Specifically, we choose indices
i = i1 < i2 < · · · < ik = j, such that for all t, we have l > it+1 − it > l/4. All these
medium-length pairs are good, with probability ≥ 1−

(
n
2

)
/n8 ≤ 1− 1/n6. This implies that

all the long pairs are reachable via these medium-length “paths”.
We conclude that f(D(G, ψ)) ≤ ℓ(n, ψ) +

(
n
2

)
/n6 ≤ ℓ(n, ψ) + 1.

5. Constructing small-hop exact spanner in 1-dim

The above construction has a large diameter. We want a better construction that has a
small-hop diameter (in the number of edges).

5.1. Handling the short pairs

Let c7 be a sufficiently large constant (its value would be determined shortly). The input
parameters are n and ψ, and let

∇ =
1

ψ1/3
, b =

⌈
c7∇
ψ

lnn

⌉
and l= 6b. (5.1)

Consider the graph G over JnK where we connect two vertices i < j if |i− j| ≤ l.
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Lemma 5.1. For G the graph constructed above, let H ∼ D(G, ψ). The expected number of
pairs i < j < i+ l, such that this pair has no 2-hop path in H, is bounded by n/ψ2.

Proof:  Lemma 3.1 quantify the probability of having a 2-hop path between two vertices.
Now, the result is readily implied by the analysis of  Lemma 3.2 .

5.1.1. Handling the long pairs

We need a construction of a 2-hop exact spanner on JnK. There are some beautiful con-
structions known of bounded hop spanners [  CFL85 ,  Cha87 ,  AS24 ]. For example, Chazelle
[ Cha87 ] shows how to construct a graph with O(n) edges, and O(α(n))-hop diameter, where
α(·) is the inverse Ackermann function. Happily 

2
 the simple 2-hop construction (that we

describe next) is sufficient for our purposes.

Lemma 5.2. One can construct a 2-hop exact spanner on JnK with O(n log n) edges.

Proof: Take the median m = ⌊n/2⌋, and connect it to all the vertices in JnK except itself, by
adding n− 1 edges to the graph. Now, continue the construction recursively on J1 : m− 1K
and Jm+ 1 : nK. Let G be the resulting graph. The recursion on the number of edges of G is
E(n) = n− 1 + 2T (⌊n/2⌋) = O(n log n). As for the 2-hop property, consider any i < j, and
let I = Jα : βK be the lowest recursive subproblem still having i and j in the subproblem.
Let t be the median of I. If t = i or t = j then ij ∈ E(G). Otherwise, it, tj ∈ E(G), and
i < t < j.

We break JnK into consecutive blocks, where each block has size b. Thus, the ith block
is Bi = J(i− 1)b+ 1 : ibK. Let B =

{
B1, . . . , Bn/b

}
be the resulting set of blocks. We

construct the graph of  Lemma 5.2 where B is the set of vertices. We then take this graph,
and every edge BiBj is replaced by the bipartite clique Bi⊗Bj, see  Definition 2.1 . Let H be
the graph resulting form adding all these bicliques to the graph G constructed in  Section 5.1 .
We claim that H is the desired graph.

Claim 5.3. For n, ψ parameters, the graph H constructed above has O( n
ψ3/2 log

2 n) edges,

Furthermore, f(D(H, ψ)) ≤ ℓ(n, ψ)+1, and for a random graph K ∈ D(H, ψ), and any i < j,
such that j > i+l, we have that there is a straight path from i to j in K with at most 4-hops.
This holds with high probability for all such pairs.

Proof: Let Bs and Bt be the two blocks containing i and j, respectively. By construction,
there is a middle block Bm, such that Bs+1 ⊗ Bm and Bm ⊗ Bt−1 are present in the graph.
One can show, that with high probability, there exists i1 = i, i2 ∈ Bs+1, i3 ∈ Bm, i4 ∈ Bt−1

and i5 = j, such that i1i2i3i4i5 exists in K with high probability. We omit proving this here,
as it follows from the analysis below.

XXX
As for size, we have that the graph H has O

(
nl+

(
n
b
log n

b

)
· b2

)
= O

(
n

ψ4/3 log
2 n

)
edges.

2Or maybe sadly?
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5.1.2. A good bipartite connector

To reduce the number of edges in the graph H, the idea is to replace the bicliques by
bipartite expanders. A key tool in our analysis is understanding how connectivity behaves
in this choosing edges model between two disjoint sets.

Lemma 5.4. Let B,C ⊆ JnK be two disjoint sets, and consider the bipartite graph G =
B ⊗ C. Let ϱ be some probability. Let H ∼ D(G, ϱ). Let Y be the number of vertices in C
that have an incoming edge in H. Then, we have that

(I) µ = E[Y ] ≥M = |C| (1− exp(−ϱ |B|)).
(II) P[Y ≤ (3/4)E[Y ]] ≤ exp(−M/32).

Proof: Let β = |B|. Let Xi = 1 ⇐⇒ there is an edge in H that enters the ith vertex of C
(otherwise Xi = 0). As 1− x ≤ exp(−x), we have

P[Xi = 1] = 1− (1− ϱ)β ≥ 1− exp(−ϱβ).

Namely, for Y =
∑|C|

i=1Xi, we have µ = E[Y ] ≥ |C| (1− exp(−ϱβ)).
Finally, by  Chernoff’s inequality , we have P

[
Y ≤ 3

4 E[Y ]
]
≤ exp(−µ/32).

Definition 5.5. Let X, Y ∈ B be two distinct blocks, and let τ = c27∇/(ψb), see  Eq. (5.1) .

A random graph Ĝ(X, Y ) ∼ D(X ⊗ Y, τ) is a bipartite connector between X and Y , see
 Definition 2.1 .

For a graph G, and a set S ⊆ V(G), let Γ(S) = {y ∈ Y | x ∈ S, xy ∈ E(G)} be the set of
neighbors of S in G.

Fact 5.6. For x ∈ (0, 1), we have exp(− x
1−x) ≤ 1− x ≤ exp(−x) ≤ 1− x/2.

Lemma 5.7. Let L,R ∈ B be two distinct blocks, and consider a random bipartite connector
G = Ĝ(L,R). Let H ∼ D(G, ψ). We have the following properties (all with high probability):

(A) For all sets S ⊆ L, such that |S| = 1, we have |ΓH(S)| > pb/2 = Ω(∇ lnn).

(B) For a set S ⊆ L, such that |S| ≥ pb/2, we have |ΓH(S)| > ψ2/3b/2 = Ω(∇2 lnn).

(C) For a set S ⊆ L, such that |S| ≥ ψ2/3b, we have |ΓH(S)| > ψ1/3b/2 = Ω(∇3 lnn) =
Ω( 1

ψ
lnn).

Each of the above holds with probability ≥ 1− 1/nO(1).

Proof: As a reminder of the parameters, we have b = ⌈ c7∇
ψ

lnn⌉.
(A) Let Z = ΓH(S). We have µ = E[|Z|] = pb. Thus, by  Chernoff’s inequality , we have

P[|R| < µ/2] ≤ P[|R| < (1− 1/2)µ] ≤ exp(−µ/8) = exp(− c7
8
∇ lnn) ≤ 1

nO(c7)
. Since there are

only b choices for S, the claim follows.
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(B) We might as well restrict our attention to the subgraph involving on S on the left

side. Thus, for our purposes H ∼ D(S ⊗R, ϱ), where ϱ = τp = p
c27∇
pb

=
c27∇
b
. Observe that

ϱ|S| ≥ c27∇
b
pb/2 =

c27
2
ψ2/3 ≥ ψ2/3. By  Lemma 5.4 , we have

E[|ΓH(S)|] ≥M = b(1− exp(−ϱ |S|)) ≥ b(1− exp
(
−ψ2/3

)
) ≥ bψ2/3/2 ≥ c7

2
lnn,

and P
[
Y ≤ ψ2/3b/4

]
≤ P[Y ≤ (3/4)E[Y ]] ≤ exp(−M/32) ≤ 1/nΘ(c7).

(C) Observe that ϱ|S| ≥ c27∇
b

· ψ2/3

2
b = c27ψ

1/3 ≥ ψ1/3. The claim now follows by the
argument of part (B).

5.1.3. The improved 4-hop dependable exact spanner construction

We first construct the graph G1 over JnK as described in  Section 5.1 . Next, break JnK
into consecutive blocks, where each block has size b = ⌈ c7∇

ψ
lnn⌉. Thus, the ith block is

Bi = J(i− 1)b+ 1 : ibK, and let B = {B1, . . . , Bn/b} be the resulting set of blocks. We
construct the graph GB of  Lemma 5.2 on B (i.e., a vertex in this graph is a block of B). For
every edge BiBj ∈ E(GB) is replaced by the bipartite random connector of  Definition 5.5 ,

that is Ĝ(Bi, Bj), and in particular, we add the edges of this graph, to the graph G1. Let G
be the resulting graph.

By using the random connector instead of a bipartite clique, we reduced its size.

Lemma 5.8. The graph G has O
( n

ψ4/3
log n

)
edges.

Proof: Since the initial graph G1 connects only vertices in distance ≤ l from each other, it
has at most O(nl) edges, where l = Θ( 1

ψ4/3 log n) by  Eq. (5.1) . Each vertex of the graph

Ĝ(X, Y ), from  Definition 5.5 , has in expectation degree

b · τ = b
c27∇
ψb

= Θ

(
1

ψ4/3

)
.

Thus, overall in expectation, the graph Ĝ(X, Y ) has O(b/ψ4/3) edges. The graph GB has
O
(
n
b
log n

b

)
edges. Thus, the edge-replacement process for GB adds at most

O

(
n

b
log

n

b
· b

ψ4/3

)
= O

(
n

ψ4/3
log n

)
edges to G1.

Lemma 5.9. Let G be the above constructed graph with O( n
ψ4/3 log n) edges. Then, for a

random graph H ∈ D(G, ψ), we have, f(D(G, ψ)) = E[f(H)] ≤ ℓ(n, ψ) + 1.
Furthermore, the expected number of pairs i < j such that there is no straight ≤ 4-hop

path from i to j in H, is ≤ n/ψ2 + 1.
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Proof: The graph G contains the corresponding graph of  Lemma 4.2 , and the first part of
the claim readily follows.

So consider a long pair i+ l< j. We claim that there is a 4-hop straight path from i to
j. In particular, there are at least (say) 8 blocks between i and j (with high probability).
Formally, let Bα, Bβ ∈ B be the two blocks containing i and j, respectively.

By  Lemma 5.7 (A), there are at least ψb/2 vertices in Bα+1 that are reachable from i
by a direct edge, and let S1 be this set of vertices. The 2-hop graph GB, has a middle block
Bγ, such that we constructed the random connectors Ĝ(Bα+1, Bγ) and Ĝ(Bγ, Bβ−1), with
α < γ < β.

By  Lemma 5.7 (B), applied to (Bα+1 ⊗Bγ) ∩ H and S1, there is a set S2 ⊆ Bγ of size at
least ψ2/3b/2, that are all reachable from i by 2-hop straight path in H.

By  Lemma 5.7 (C), applied to (Bγ ⊗ Bβ−1) ∩ H and S2, there is a set S3 ⊆ Bβ−1 of size
at least ψ1/3b/2 = Ω( 1

ψ
lnn), that are all reachable from i by 3-hop straight path in H. Each

one of the above three groups have the desired bounds on their size with high probability in
n.

Finally, the probability that none of the vertices of S3 have direct edge into j is at most

(1− ψ)b/12 ≤ exp
(
−ψ

1/3b

2

)
<

1

nO(c7)
.

We conclude that all long pairs have a 4-hop paths between them with high probability.
The expected number of failed ≤ 4-hop pairs that are short is bounded n/ψ2, by  Lemma 3.2 ,
as G looks locally like a clique if j < i+ l.

We summarize the result the above implies.

Lemma 5.10. Let n > 0 be an integer, and ψ ∈ (0, 1) a parameter. The above constructed
graph G over JnK has O((n/ψ4/3) log n) edges. Furthermore, for a graph H ∼ D(G, ψ), we
have that H provides a ≤ 4-hop path for all pairs except (in expectation) ≤ n/ψ2 + 1 pairs.
For all pairs i, j, with j > i + Ω(ψ−4/3 log n), such a 4-hop straight path exists with high
probability.

5.2. Dependable k-hop 1-dim spanner

One can tradeoff the dependency on ψ by allowing more hops for the spanner. For exam-
ple, a careful inspection of the above constructions shows that the original construction of

 Section 4.2 augmented with the 2-hop block spanner, results in a graph O((n/ψ) log n) edges,
and a hop diameter O(log(1/ψ)).

Similarly, for any k > 3 integer, one can construct a spanner that has ≤ k-hop path, for
all but n/ψ2 pairs, with O

(
(n/ψ1+1/(k−1)) log n

)
edges.

The construction is similar to the above. To this end, let ∇ = 1/ψ1/(k−1), and let

b = O
(
∇c7
ψ

lnn
)

and l= (k+ 4)b. (5.2)
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We connect all the pairs that are in distance ≤ l from each other. Similarly, we inject the
2-hop spanner on the blocks, where every edge between two blocks is replaced by a random
connector, where the degree of a vertex in the connector, in expectation is O(∇/ψ). Let G
be the resulting graph, and let H ∼ D(H, ψ).

As before, if a pair is long, then there is a path i → B1 → B2 → · · · → Bk−1 → j.
connecting them. Let St all the vertices of Bt that are reachable via a t-hop path from i in
H, and let αt = |St|. It is not hard to prove, using the same argument as above, that with
high probability, that α1 ≥ pb/2, and more generally, for i ≥ 1, we have αi = Ω(∇i log n).
Thus, αk−1 = Ω(∇k−1 log n) = Ω( 1

ψ
log n). But then, with high probability there is a direct

edge from a vertex of Sk−1 to j. Thus, with high probability, there is k-hop path from i to j.

Theorem 5.11. Let n > 0, k > 3 be two integers, and let ψ ∈ (0, 1) a parameter. The above
constructed graph G over JnK has O((n/ψ1+1/(k−1)) log n) edges. Furthermore, for a graph
H ∼ D(G, ψ), we have that H provides a ≤ k-hop path for all pairs except (in expectation)
O(kn/ψ1+1/(k−1)) pairs. For all pairs i, j, with j > i + Ω(ψ−1−1/(k+1) log n), such a k-hop
straight path exists with high probability.

Proof: We only need to bound the expected number of pairs that are short and fail to have
a k-hop path – their distance is smaller than O((1/ψ1+1/(k−1)) log n) (all other claims are
implied by the above analysis). This follows by proving a bound on the k-deficiency of Ln,
which we done below. See  Lemma 5.13 .

5.2.1. Bounding the k-hop deficiency of the clique

We need the following straightforward extension of  Lemma 3.3 (the proof is essentially the
same, so we omit it).

Corollary 5.12. Consider breaking JnK into blocks of size ξc/ψ, where ξ > 1 is an integer,
and c is the constant from  Eq. (3.1) . Consider two blocks B and B′, where B appears before
B′, and gi−1 = g(B, i− 1) > 0 be all the vertices in B that are reachable from 1 by a straight
path with ≤ i− 1 hops. We have:

(A) P
[
g(B′, i) ≥ min(2ξgi−1, b/3)

]
≥ 1/2.

(B) If gi−1 ≥ b/3, then P
[
g(B′, i) ≥ (2/3)b

]
≥ 1/2.

Lemma 5.13. We have ℓ≤k(n, ψ) ≤ O(kn/ψ1+1/(k−1)), see  Definition 2.4 .

Proof: We are going to bound the expected number of vertices in G ∼ D(Kn, ψ) that do
not have a k-hop path from 1. To this end, we break JnK into blocks of size b = ξ(c/ψ),
where ξ =

⌈
4/ψ1/(k−1)

⌉
, and let B = {B1, . . . , Bn/b} be this set of blocks. Let X1 be the

minimum index, such that g(BX1 , 1) > ξ. Since E[g(Bi, 1)] = cξ and c > 2, this implies that

E[X1] ≤ 2. More generally, for t > 1, let Xt be the minimal index such that g(BXt , t) > ξt.
By  Corollary 5.12 , we have that E[Xt −Xt−1] ≤ 2. In particular, E[Xk−1] ≤ 2k. Observe,
that any vertex in a block Bj, with j > Xk−1 +∆ has at least (in expectation) ∆/2 blocks,
where each one of them has at least ξk−1 > 4/ψ vertices that are (k− 1)-reachable. Indeed,
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each block Bs, for s ∈ JXk−1 : Xk−1 +∆K, has at least probability half of having 4/ψ vertices
that are (k−1)-reachable, and these events are independent (we are using here  Corollary 5.12  

on each one of these blocks). Thus, using Chernoff’s inequality, there is some constant c8,
such that the probability there are not at least ∆/4 such good blocks, for Bj is at most
exp(−∆/c8). And furthermore, if Bj is good in this sense, then the probability that a vertex
u ∈ Bj does not have a k-hop path to it is at most

(1− ψ)(4/ψ)(∆/4) ≤ exp(−∆).

In particular, we have that the expected number of vertices of JnK that are unreachable
by a k-hop straight path from 1 is bounded by

E[Xk−1b] +
∞∑

∆=1

(
exp(−∆/c8) + exp(−∆)

)
b = O(kb).

6. A dependable spanner in Rd

We need to use LSOs, see  Definition 1.1 , and in particular, the following result of Chan et al.
[ CHJ20 ] for computing a universal set of LSOs.

Theorem 6.1 ( CHJ20 ). For ε ∈ (0, 1/2], there is a set Π+ of O(log(1/ε)/εd) orderings of
[0, 1)d, such that for any two points u, v ∈ [0, 1)d there is an ordering σ ∈ Π+ defined over
[0, 1)d, such that for any point x with u ≺σ x ≺σ v it holds that either ∥ux∥ ≤ ε ∥uv∥ or
∥vx∥ ≤ ε ∥uv∥ (i.e., σ is ε-local for u and v).

Furthermore, given such an ordering σ, and two points u, v, one can compute their or-
dering, according to σ, using O(d log(1/ε)) arithmetic and bitwise-logical operations.

Theorem 6.2. Let P be a set of n points in Rd, and let ψ, ε ∈ (0, 1) be parameters. One

can construct a graph G over P with O
(

Cε
ψ4/3n log n

)
edges, such that for all u, v ∈ P ,

except maybe (in expectation) O(CεCψn) pairs, we have that H ∼ D(G, ψ) provides a 4-hop
path connecting u and v, of length at most (1 + ε) ∥uv∥, where Cε = O(ε−d log ε−1) and
Cψ = O(ψ−4/3).

Proof: We compute the set Π+ of ε/8-LSOs provided by  Theorem 6.1 for P , where Cε = |Π+|.
For each LSO σ ∈ Π+, construct the graph Gσ of  Theorem 5.11 (with k = 4) over the points
of P , and let G is the union of all these graphs.

Now, for any u, v ∈ P , let σ ∈ Π+ be their ε/8-local order. In expectation, except for
O(n/ψ4/3) pairs, all other pairs have a 4-hop path in Gσ ∼ D(Gσ, ψ). Assuming u and v
have such a path π ≡ u → p1 → p2 → p3 → v in Gσ. Let ℓ = ∥ψq∥. Observe that all the
edges in this path, except exactly one segment, are either in b(ψ, ℓε/8) or b(ψ, ℓε/8). The
total length of these short edges of π is thus

≤ 3 · 2ℓε/8 ≤ (3/4)εℓ.
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The single long edge across the two balls in the path has length ≤ ℓ + 2(εℓ/8). Thus, the
total length of the path π is at most ℓ+ εℓ/4 + (3/4)εℓ = (1 + ε)ℓ, which implies the claim.

An alternative approach is to set k = ⌈log(1/ψ)⌉, use ε/(2k)-LSOs, and plug it into the
above machinery. This leads to the following.

Corollary 6.3. Under the settings of  Theorem 6.2 . one can construct a graph G over P
with O

(
C · 1

εdψ
· n log n

)
edges, with C = O

(
logd 1

ψ
log log(1/ψ)

ε

)
, such that for all u, v ∈ P ,

except maybe (in expectation) O
(
nC 1

εdψ
log 1

ψ

)
pairs, we have that H ∼ D(G, ψ) provides a

2
⌈
log 1

ψ

⌉
-hop path connecting u and v, of length at most (1 + ε) ∥uv∥.

7. Conclusions

We leave many open problems to further research. First issue (but arguably not that ex-
citing) is finetuning the parameters – can the dependable spanner construction dependency
be improved to 1/εd−1 instead of 1/εd (ignoring polylogs). The recent work of Gao and
Har-Peled [ GH24 ] suggests this should be doable. Similarly, one can try and extend the con-
struction of doubling metrics, or general metric spaces. In the same vein, can one improve
the dependency on ψ in the dependable spanner construction?

A potentially more interesting problem is trying to extend the results when the probability
of failure for every pair of points is provided explicitly. Can one compute a good dependable
spanner in such a case of near optimal size?
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A. Standard tools

Theorem A.1 (Chernoff’s inequality). Let X1, . . . , Xn ∈ {0, 1} be n independent ran-
dom variables, with pi = P

[
Xi = 1

]
, for all i. let X =

∑n
i=1Xi, and µ = E

[
X
]
=

∑
i pi.

For all δ ≥ 0, we have P
[
X < (1− δ)µ

]
< exp

(
−µδ2/2

)
.

19


	Introduction
	Background
	Our results

	Preliminaries
	On the optimal deficiency l(n,p )
	A rough upper bound
	A tighter upper bound on the deficiency l(n, pr )
	The lower bound
	The result

	Constructing exact spanner in 1-dim
	A lower bound on the number of failed pairs in a graph
	Construction

	Constructing small-hop exact spanner in 1-dim
	Handling the short pairs
	Handling the long pairs
	A good bipartite connector
	The improved 4-hop dependable exact spanner construction

	Dependable k-hop 1-dim spanner
	Bounding the k-hop deficiency of the clique


	A dependable spanner in Rd
	Conclusions
	Standard tools

