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Abstract. Motion planning in modified environments is a challeng-
ing task, as it compounds the innate difficulty of the motion planning
problem with a changing environment. This renders some algorithmic
methods such as probabilistic roadmaps less viable, as nodes and edges
may become invalid as a result of these changes. In this paper, we
present a method of transforming any configuration space graph, such
as a roadmap, to a dynamic data structure capable of updating the va-
lidity of its nodes and edges in response to discrete changes in obstacle
positions. We use methods from computational geometry to compute 3D
swept volume approximations of configuration space points and curves to
achieve 10-40 percent faster updates and up to 60 percent faster motion
planning queries than previous algorithms while requiring a significantly
shorter pre-processing phase, requiring minutes instead of hours needed
by the competing method to achieve somewhat similar update times.

1 Introduction

In the motion planning problem, we are given a robot r and an environment
E = {B,O} (aka workspace) which is composed of a bounding box B, a set of
obstacles O, and two configurations s and t of r in E, and we are tasked with
deciding whether there exists a valid, i.e. collision free, sequence of movements
taking r from configuration s to t.

A common approach in designing motion planning algorithms is to reduce
the problem to finding a curve in the space of valid configurations, a subset of
the implicitly defined configuration space (C-space) [14] of r, with the points
corresponding to configurations s and t as its endpoints. These algorithms of-
ten build a geometric graph in the C-space called a roadmap whose nodes and
edges represent feasible configurations and valid continuous motions of r in E
respectively [11]. These representations often assume an environment in which
obstacle positions never change.

In this paper, we tackle the problem of enhancing such roadmaps to account
for the possibility of discrete changes in the obstacles’ positions. These changes
occur in multi-agent task and motion planning problems (i.e., multi-robot and
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Fig. 1: An image of the 5DOF UR5e robot used in physical experiments to test
the validity of paths produced in simulation. Shelf environments are likely to be
modified as stored items are added, removed, or placed in new locations.

human-robot collaborations), where agents can move objects, or in methods
which seek to re-utilize plans generated earlier. See Figure 2 for an illustration.

The main challenge is to update the validity of nodes and edges in the
roadmap (corresponding to points and curves in C-space) given changes in the
workspace, as the effects of such changes on the C-space are not well understood.
Intuitively, by continuity, small changes in object positions should result in local
effects in the roadmap, as it is a geometric graph. Thus, one can hope that a
relatively efficient graph data structure can help with this task.

Contribution We present a supplemental algorithm for roadmaps that can
quickly find the set of nodes and edges whose validity status was altered due
to a change in the workspace. While our contribution is not a motion planning
algorithm, it is designed for multi query motion planning scenarios and enables
quick computation of motion planning queries in a single environment for a
known robot. Any graph-based SBMP algorithm can be paired with our method
in order to generate an augmented roadmap that can maintain its functionality
in the presence of workspace changes using less pre-processing time and faster
updates than the previously best known method.

We achieve this improvement with a second contribution, an approach to
3D workspace volume approximations which enables us to store approximated
robot configurations and swept volumes in a kD-tree like data structure which
we use for fast hierarchical collision checking. This enables us to obtain a set
of nodes and edges which may be affected by some modification made to the
environment, and either invalidate or re-validate them.

Evaluation We compare our method with what is, to the best of our knowledge,
the only method that produces a dynamic roadmap capable of updates in the
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(a) Before o2 updated position
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(b) After o2 updated position

Fig. 2: A modified environment E = {B, {o1, o2}} with an overlaid roadmap for a
small robot with two translational DOFs and one rotational DOF. The valid and
invalid nodes of the graph are depicted as configurations with black and white
centered points respectively, and valid and invalid edges are depicted as full and
dashed segments respectively. The obstacle o2 moves from its first position seen
in 2a to a new one seen in 2b, an event that changes the validity of several nodes
and edges.

presence of workspace changes [13,9] Since there is no extant code from either
paper, we have implemented the algorithm from [9] ourselves, and tested our
method against it both by comparing query times with a wide range of obstacles,
and by comparing the runtimes of sequences of motion planning problems in a
changing environment.

Similarly to [9], we also tested the runtime of motion planning queries com-
puted by applying our method to a roadmap against single-query motion plan-
ning algorithms often used for non-static scenarios. Like [9], we use RRT [12]
for these comparisons, and, for reasons later explained, chose to also include the
LazyPRM algorithm [3] in our experiments.

Our experiments confirm that our data structure performs faster update
operations than the only previous method, with average runtimes 10-40 percent
faster depending on the size and shape of the modified obstacle (see Section 5.2
for details and Table 1 for results) and enables an augmented roadmap to solve
motion planning queries faster than both single query algorithms and roadmaps
utilizing the previous method by as much as ∼ 60 percent (see Section 5.3 for
details and Tables 2 and 3 for results).

2 Related Work

In this section, we present the relevant body of work published on the problem
and related subjects. We start by giving a brief review of some of the seminal
work on sampling based motion planning, followed by a more in depth review
of such work specifically designed for changing environments. We divide the
latter part into two, LazyPRM adjacent work, and RRT adjacent work. Note that
LazyPRM and RRT are the methods we use to demonstrate our contribution in
Section 5.3.
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2.1 Sampling-based motion planning

Sampling based motion planning (SBMP) is a motion planning approach in which
C-space graphs are built using random sampling of nodes which are connected
by edges computed by motion-planning primitives called local planners. This
addition of randomness has been found effective in addressing the problem’s in-
tractability that expresses itself as a C-space of possibly exponential complexity
in the size of the input.

Probabilistic Roadmaps (PRM), introduced by Kavraki et al. [11], are a
family of SBMP algorithms that usually randomly sample node configurations,
connect each configuration to some set of nearby nodes to form a graph (aka
roadmap) containing representations of feasible paths. The roadmap is used to
solve the motion planning problem by adding the start s and the goal t as new
nodes of the graph and returning a graph (s, t)-path if one exists.

PRMs are usually used for the multi-query variant of the motion planning
problem in which we are required to solve a set of motion planning problems
for a single type of robot in a static workspace, as any change to either of these
components results in changes to the implicit C-space and might render some
of the graph’s nodes and edges invalid. Many PRM variants exist and have been
found to be applicable for a wide range of motion planning problems. See [16]
and references therein.

The RRT algorithm introduced by LaValle [12] is a single query motion plan-
ning algorithm that expands a tree graph in the C-space by choosing a random
point in the space and extending an edge towards that point from the near-
est tree node. The RRT algorithm and its many variants, see [4] and references
therein, are widely used both as stand-alone single query algorithms, and as a
building block in many more complex methods, some of which we discuss below.

2.2 Planning in Modified Environments

The term “Modified environments” can be interpreted in two distinct ways. In
this paper the changing nature of the environment is manifested in discrete
changes to the location of obstacles, while other motion planning algorithms
operate in the presence of a temporal dimension, meaning that certain obstacles
have either known or estimated trajectories over time, and the algorithm must
take these into account when computing the robot’s path. For the rest of this
paper, this section excluded, we will use the adjective “modified” to mean the
former.

Dynamic Roadmaps The papers most closely related to ours are by Leven and
Hutchinson [13] and Kallmann and Mataric [9], where the latter built upon ideas
from the former. Most notably, both papers approach the C-space - workspace
relationship by partitioning the workspace using a fixed resolution grid, and
maintaining lists of cell-node and cell-edge incidences. Despite the strong connec-
tion between the papers, the two focus on different aspects of the problem. The
first paper ([13]) utilizes the similarity of lists of adjacent cells, where the best
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definition of “adjacency” is one of the paper’s contributions, to create efficient
representations of these incidence lists. The second ([9]) introduces a new update
operation which relies on approximating the moved obstacle by its bounding box
and focuses on the runtime when compared against RRT. Our contribution is
much more closely aligned with that of [9], but where they used unions of uni-
form axis-aligned cubic grid cells in order to approximate the swept volumes, we
use arbitrarily oriented and shaped cigars (see Section 3) to allow quick inter-
section checks and constant size space complexity per node/edge. Furthermore,
where they used a uniform grid partition of workspace (even though both they
and [13] mention the possibility of using an octree) we use a hierarchical, input
sensitive decomposition. See Subsection 4.2.

Lazy Evaluation Bohlin and Kavraki’s LazyPRM [3] is a well known single
query variant of the PRM algorithm. The lazy algorithm creates a roadmap
without validating its edges, the part of PRM which usually requires the most
runtime by an order of magnitude as a single edge can contain thousands of
configurations that require validation. Some variants do not validate the nodes
as well [2,3]. Given a motion planning query, the algorithm lazily connects the
start and the goal to the roadmap and tries validating only the edges that lie on
the shortest (s, t)-path in the roadmap. While this is not explicitly an algorithm
meant for modified environments its “laziness” means that it can operate in mod-
ified environments (as we describe them) by simply ignoring all past information
after each query.

LazyPRM has also inspired other algorithms meant specifically for changing
environments. Jaillet and Simèon [7] gave a PRM based algorithm that computes
a roadmap for the environment while considering only the static obstacles, and
lazily evaluating a path by collision checking it only against dynamic obstacles
that have moved in the vicinity of an (s, t)-path found in the roadmap. An
important thing to notice is that if all of the obstacles are dynamic this algorithm
degenerates to a variant of LazyPRM (as it does employ several other heuristics
not found in [3]).

Hartmann et al. [6] describe a single query lazy motion planning algorithm
for environments with movable objects that reuses computations by dividing
validity checking efforts into several parts, and, given a query, validating the path
by validating it against movable objects that have recently moved. Additionally,
they give a PRM variant that, among other contributions, validates the robots’
collisions with itself and with static obstacles only when expanding the roadmap,
and, much like [7], reuses that information when validating a path.

Rapidly-exploring Random Tree (RRT) Algorithms RRT is used in mo-
tion planning for changing environments due to its ability to quickly explore an
unknown C-space. This property is extremely useful in these settings since a
change to an obstacle’s position changes the landscape of the C-space and pos-
sibly invalidates some of a roadmap’s nodes and edges. An exploration process
can then be employed in order to find a new path in a region where a path once
existed [7].
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Multipartite RRT [18] updates the validity of edges that have been obstructed
by moved obstacles and stores the resulting disconnected subtrees in a cache. The
root nodes of these subtrees are used as part of subsequent sampling. RT-RRT∗

[15] grows an RRT∗ [10] tree, an asymptotically optimal variant of RRT. When
the obstacle moves, it rewires the tree to not include any invalidated edges, and
when the agent moves, the root is moved and the tree rewired around it to allow
for multiple queries. In order to do this rewiring the paper searches adjacent
cells with a simple grid-based spatial indexing.

Instead of taking a reactive planning approach, the workspace can be ex-
tended by a temporal dimension to incorporate known or predicted obstacle tra-
jectories. SIPP [17] utilizes safe temporal intervals in a discretized space, where
valid paths are found by using A* to connect cells during safe intervals. ST-
RRT∗ [5] plans over continuous space with an added temporal dimension using
random sampling. It uses a number of approaches to optimize sampling in both
the spatial and temporal dimensions, such as conditional and weighted sampling.
These planning methods are thus able to plan into the future around obstacle
trajectories over time.

Note that the methods mentioned in the previous paragraph solve the single-
query motion planning in a dynamic setting where obstacles move during the
query phase. We therefore do not compare our data structure to these methods
as they use extra computational resources for responding to online changes unlike
single query algorithms for static environments.

3 Preliminaries

Let r be a robot, E = (B,O = {oi : i = 1, . . . ,m}) be a 3D environment, Cspace
be the implicit C-space defined by r and E, and G be a geometric graph in
Cspace, i.e. a roadmap whose nodes and edges are points (configurations) and
segments in Cspace respectively.

Problem Definition Given r, E,O, and G as an input, compute a dynamic graph
H capable of performing 6DOF transformation updates of an object’s location
in workspace oi 7→ R · oi +T . At the end of the update operation all valid nodes
and edges must be labeled as valid, and all infeasible nodes and edges must be
labeled as invalid.

Let FK : Cspace −→ P
(
R3

)
be the forward kinematics function that, given a

configuration c ∈ Cspace, returns the set of all points in R3 that are occupied by
r assuming the configuration c. With a slight abuse of notation we use FK(C)
for subsets C ⊆ Cspace to mean

⋃
c∈C FK(c), and call the resulting 3D set the

swept volume of C.
A node or an edge of G is invalid if its swept volume intersects any obstacle

oi, and otherwise it is valid . Note that this definition does not include robot
self collision, kinodynamic constraints, and out-of-boundary constraints. This is
suitable for our purposes as we only deal with movements of obstacles within B
and their effect on G. This is not an issue because any of the aforementioned
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conditions can be pre-computed once when computing G and have no further
bearing on the problem. This simplification of the validity conditions allows us
to reduce validity checking to 3D shape intersections which can be done very ef-
ficiently under some assumptions we consider to be reasonable. Our assumptions
are as follows:

1. r can be approximated as a small set br1, ..., b
r
k of convex polyhedrons.

2. Every object oi ∈ O can be approximated as a small set boi1 , .., boil of convex
polyhedrons.

3. The approximations mentioned above are either given as part of the input
or can be efficiently computed.

4 Method

As mentioned previously, in many high dimensional motion planning problems
the relationship between the C-space and the workspace is neither easy to un-
derstand nor to compute. As such, we use rough approximations of the mapping
between points and segments in the high-dimensional C-space to 3D volumes in
workspace, and utilize common computational geometry tools in order to per-
form roadmap update operations. The shapes we are required to approximate
are swept volumes of points and segments in Cspace, which, under our assump-
tions, are small sets of convex polyhedrons or linear motions (with rotations) of
such polyhedrons. We approximate these polyhedrons using cigars.

A cigar, also called a capped cylinder, is the Minkowski sum s ⊕ b of a
segment and a ball, that is

⋃
p∈s b(p) where b(p) is a translated copy of the

ball b centered at p, and it is our “weapon of choice” for three main reasons;
a) Cigars are very similar to ellipsoids which have been long known to provide
decent approximations for high dimensional convex bodies [8], b) Linear motions
of convex bodies tend to create long thin swept volumes which can be easily
bounded by a cigar, and c) Distance and intersection computations involving
cigars can be quickly approximated by viewing them as 3D segments with an
associated radius.

In the following subsections, we describe the method by which we compute
bounding cigars of swept volumes and create a data structure capable of storing
a set of cigars and answering intersection queries of said set with simple shapes.

4.1 Swept Volume Approximation

Our assumptions immediately imply another assumption of many SBMP algo-
rithms, which is that continuous motion can be sufficiently approximated by a
discrete set of intermediate configurations. Given an edge (p, q) ∈ G, we first
construct a point cloud P containing the vertices of FK(c) for every intermedi-
ate c of (p, q). We then use an algorithm for approximating the optimal volume
oriented bounding box of a point cloud [1], and construct our cylinder from the
resulted box. Note that rather then using the box itself as the 3D representation
of the swept volume, we opted for using the smallest cigar containing the box
for simpler and quicker intersection queries.
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(a) Intermediates
composing an edge
of a roadmap (pla-
nar manipulator)

(b) The swept vol-
ume approximation
of the 3rd link of the
robot

(c) Intermediates
for an edge of a
roadmap (planar
mobile robot)

(d) The swept vol-
ume approximation
of the robot

Fig. 3: In (a) we illustrate a set of configurations of a mobile manipulator with
2 translational DOFs and 3 angular joints composing an edge in some roadmap,
and in (b) we see the point cloud and the cigar corresponding to the 3rd link of
the robot. In (c) and (d) a similar process can be seen for a simple 3DOF planar
robot.

4.2 Cigar Tree

We store the cigars in an axis-aligned bounding box tree (AABB tree), a data
structure resembling a kD-tree in which every node is associated with an axis-
aligned bounding box and the set of objects it contains, and the node’s children
are constructed by splitting the bounding box perpendicularly to one of the axes
and using some tie-breaker for objects intersecting the boxes of more than one
child. Our implementation actually uses a ternary tree with all of the objects
intersecting both sides stored in a separate child. Such geometric data structures
may be problematic for certain inputs, for example a set of long segments with
endpoints close to antipodal points of the scene’s bounding box cannot be easily
separated along any of the 3 axes. This is, however, mostly irrelevant in our
case due to the reasons described earlier in this section. Our data structure
answers intersection queries in a straightforward AABB way. Given some query
polyhedron Q, we start at the root and recurse on the children whose bounding
box intersects Q, and, upon reaching a leaf of the tree, we check for intersections
between the small (constant) number of cigars stored in that leaf and Q and
append those that intersect to the output list.

Using the tools described above in conjunction with a simple data struc-
ture that stores for every obstacle oi the list of edges and nodes it is currently
invalidating we get a quick update operation described in Algorithm 1. The ob-
stacle’s polyhedron or approximating polyhedron is passed as an argument to
the tree’s intersection query resulting in a list of nodes and edges that need to
be re-examined. This is followed by a re-examination of nodes and edges that
were previously in collision with oi.
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Algorithm 1: Roadmap Update

input: Obstacle o, Transformation t
1 o.UpdateLocation(t)
2 invC ← Tree.GetIntersectingObjects(o)
3 for c ∈ invC do
4 if CD(c,o) == blocked then
5 c.invalidate() # Invalidating nodes and edges
6 c.intersectionList.add(o)

7 end

8 end
9 revC ← Tree.GetIntersectedVolumes(o)

10 for c ∈ revC do
11 if CD(c,o) == free then
12 c.intersectionList.remove(o)
13 if c.intersectionList.IsEmpty() then
14 c.validate() # Re-validating nodes and edges
15 end

16 end

17 end

Some experiments not included in this paper actually show that the using the
tree, as opposed to, say, a simple list of cigars, has very small effect on the runtime
of graph update operations. This is true even though it is exponentially faster
then linear scanning, and it is due to the runtime of the collision detection calls
required to validate nodes and edges dominating the overall resulted runtime.

5 Experiments

With our experiments, we aim to validate our claims that 1) our approach re-
sults in faster update times for a dynamic roadmap in the presence of workspace
changes, and 2) this faster update time of the dynamic roadmap enables faster
motion planning in multi-query scenarios than single query algorithms tradition-
ally used for non-static scenarios.

5.1 Experimental Setup and Implementation Details

In order to demonstrate our claims we run two sets of experiments.
In the first set, we directly measure the improvement in the roadmap update

time against a brute-force benchmark and against an implementation of the
method described in [9], which, as mentioned in Section 2, is the only method
for C-space graph updates for modified environments we were able to find in
the literature. We refer to this algorithm as the grid method. Note that we have
implemented the grid method ourselves based on the paper.

In the second set, we use our data structure as part of a multi-query motion
planning algorithm and compare its performance against the grid method, RRT,
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and LazyPRM. These experiments capture the applicability of our data structure
in lieu of the results showcased by the first experiment, and demonstrates its
ability to allow fast pathfinding operations in C-space in a modified setting
for both mobile robots and manipulators. The grid method was previously only
compared to RRT, but we have decided to compare our method against LazyPRM
as well since LazyPRM is not only a fast single query SBMP algorithm, but
one that can take an unvalidated roadmap as an input which may considerably
improve its performance, e.g., when the provided roadmap contains a valid path.

Our method and the grid method only maintain and update the validities of
the roadmap nodes and edges when obstacles are moved, and so in order to fairly
compare the runtime of motion planning queries against single-query methods
we measure the roadmap update time in addition to the time needed for the
roadmap to answer the motion planning query. We stress that our method does
not assist in pathfinding or the creation of better roadmaps, only adjusts such
graphs to allow them to operate on modified environments. For this reason we use
an input graph guaranteed to contains a solution, and the same graph is provided
to all methods for a fair comparison. This choice of roadmap demonstrates that,
given an appropriate graph to build upon, our method provides a better solution
for multiple queries in a modified environment than using the grid method or
single query algorithms.

SPITE Implementation Our method uses two computational geometry com-
ponents for its purpose, one for approximating 3D volumes with cigars, and one
for storing the cigars and answering intersection queries. Since the runtimes re-
lated to the cigar tree operations have almost no impact on the overall runtime,
as they are smaller than those required for full collision checks by orders of
magnitude, we did not bother to optimize them.

The approach for computing the cigars employs an algorithm for constructing
an approximately optimal oriented bounding box [1] for which we have chosen
the approximation factor 0.1.

We determine the set of cigars intersecting an obstacle, and by extension, the
set of nodes and edges possibly invalidated by a modification to the workspace,
by querying the cigar tree with the obstacle’s axis aligned bounding box. The
set of previously invalid nodes and edges that need to be re-checked is compiled
by storing an incidence list of obstacles and nodes/edges, and all fine-grained
collision checking is done by the collision detection function.

Grid Method Implementation The grid method partitions the workspace
into uniform cubes of some pre-determined side length and computes for each
cell the set of nodes corresponding to configurations intersecting that cell and
edges corresponding to movements whose swept volume intersects it. This can be
viewed as approximating the 3D volumes occupied by robot configurations and
movements by a subset of axis-aligned uniform size cubes. Given an update in an
obstacle’s position the method computes the axis-aligned bounding box of the
obstacle in its new configuration and reports all of the nodes and edges listed in
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workspace cells with non-empty intersection with the obstacle’s bounding box.
The validity of these nodes and edges is then checked using the collision detection
function.

This method offers a trade-off between pre-processing time and update time.
The pre-processing phase can be somewhat expensive if the chosen cell size is
small due to the well known exponential increase in complexity incurred by grid
data structures. On the other hand if the cells are large that will result in many
unnecessary and expensive collision detection calls that will be performed as
obstacles intersect the grid cell more often during updates, and each such grid
cell is associated with a prohibitively long list of affected nodes and edges.

Because of this we report at least two instances of the grid method for every
experiment in order to demonstrate that the discrepancy between SPITE and
the grid method is not an artifact of the parameters used.

LazyPRM Implementation The first single query method we compare against
is LazyPRM [3]. We test LazyPRM by giving it the same roadmap used by our data
structure as an argument. LazyPRM connects the start and goal configurations
to the roadmap graph, finds a path in the graph, validates its vertices, and
only validates its edges if all previous steps were successful. The path validation
process uses hierarchical validation, meaning, first attempts to validate the path
at a coarse resolution (one in every 27 intermediates of an edge), and only if the
entire path is valid at that resolution moves forward to a finer resolution (one
in 16) and finally completely validates the path.

Since this implementation of LazyPRM first validates the vertices of a path
before launching an expensive edge validation, we ensure that at least in the
mobile robot experiment the validity of the nodes along a path are a perfect in-
dication of the validity of its edges, thus maximizing the efficiency of LazyPRM as
much as possible. Since the roadmaps used for the manipulators were randomly
created we did not guarantee this property in those experiments.

RRT Implementation The second method we compare against is RRT [12].
Our implementation is standard. We use minimum and maximum extension
distances to be 0.1 and 4.0 respectively. Out of all the methods we use in this
experiment RRT is the only one which does not use an initial roadmap since it
performs pathfinding directly in C-space. All other methods use a roadmap as
an argument and perform path finding only on that roadmap.

General implementation details All experiments were run on a desktop computer
with an Intel Core i7-3770 at 3.40GHz, 16 GB of RAM. The Parasol Planning Li-
brary (PPL) implementations were used for all SBMP functions and algorithms.

5.2 Dynamic Roadmap Updates

In the first experiment, we test our graph update method against the grid method
and a brute-force method. Our method and the grid method compute a set
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Fig. 4: Different orientations of similar line segment obstacles (in blue) and their
corresponding axis-aligned bounding boxes.

of nodes and edges and then validate only that set using fine-grained collision
detection. The brute-force method re-validates every node and edge in the graph
with no regard to the workspace changes that took place. Note that all methods
use the same collision detection algorithm which only performs collision detection
against the subset of obstacles whose position has changed.

The experiment environment is a cube [−16, 16]3 with a single axis-aligned
rectangular prism obstacle. The robot is a simple 6DOF rectangular prism. Ex-
periments are run with nine different shapes and sizes of the rectangular prism
obstacle, which results in different queries to the grid data structure and the
cigar tree. We use rectangular obstacles of varying sizes and shapes because it
mimics the bounding boxes of differently shaped obstacles. Both data structures,
i.e. the cigar-tree and the grid, use the axis-aligned bounding box of the obstacle
when computing the intersected regions (tree leaves and grid cells respectively).
For example, the update operation required for an arbitrarily oriented long and
thin obstacle o will result in a data structure query which could be a long and
thin axis-aligned box if o’s orientation is close to parallel to one of the axes and
perpendicular to all other axes, but could also be a “slice” of the environment or
even a large cube if the orientation is diagonal in some or all of the dimensions.
See Figure 4 for a visualization of this.

Three sets of experiments are performed with cube-shaped obstacles of side
lengths 2, 5, and 20, and six sets experiments are performed with prisms of
dimensions [20× 20× 1], [20× 1× 1], [20× 20× 2], [20× 2× 2], [20× 5× 5], and
[20× 20× 5].

We created a roadmap with 1000 nodes and ∼5000 edges using a uniformly
sampling PRM algorithm where each node is connected to its 6 nearest neighbors.
Then we constructed our data structures with the roadmap as input. Both our
data structure and the grid method have a pre-processing phase where the graph
nodes and edges are mapped to workspace objects (cigars and grid cells respec-
tively) and checked for validity. Notice the time required for this pre-processing
step is not included in the average comparison time, but is included as part of
the reported results. We perform 100 random location changes for each obstacle
size, each followed by a roadmap update operation with the change to the obsta-
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obstacle SPITE(ms) Grid 1(ms) Grid 2(ms) Grid 4(ms) Grid 8(ms) BF

1× 1× 1 5.3 8.9 15.8 36.0 116.3

∼ 4 sec

1× 1× 1 50.3 67.0 93.9 149.8 296.9
20× 2× 2 39.7 57.2 85.2 152.6 343.1
5× 5× 5 58.0 70.7 95.7 153.4 301.4
20× 20× 1 212.2 246.9 314.3 453.0 718.8
20× 5× 5 136.7 166.1 212.7 300.9 478.3
20× 20× 2 292.1 337.9 417.5 577.8 872.9
20× 20× 5 422.4 465.6 538.7 708.6 974.9
20× 20× 20 610.7 778.9 773.8 924.4 1126.8

Pre-
processing
time

2 min 29 hrs 4 hrs 34 min 4 min -

Table 1: Comparison of dynamic roadmap updates using SPITE and grid with
different cell sizes. BF stands for brute force, and Grid i refers to the grid method
with cells of side length i. All results for which a time unit is not disclosed are
in milliseconds. Best result in every row is highlighted green, the last row has
lighter green for best pre-processing time out of methods with such a runtime
component.

cle location as an input. We measure and compare the time required to perform
an update.

The results are shown in Table 1.

5.3 Motion Planning Queries

A natural way of using a data structure such as ours is using it to perform ob-
stacle update operations on a roadmap when obstacles change position, and use
that roadmap to answer motion planning queries as they are given. Another way
to handle environment changes between motion planning queries is to not store
any C-space information and solve motion planning queries using a single query
algorithm. In this set of experiments, we evaluate this latter option against our
data structure and the grid method by comparing the run-time of single query
algorithms against the combined runtime of a data structure update method and
a motion planning query using the roadmap.

Mobile Robot Experiment We run the experiment on the environment shown
in Figure 5, which contains three walls, each with two possible locations of a
narrow passage. The experiment consists of 1000 iterations, in each of which we
change the location of the passage in each wall with probability 1/2. Our robot
is a small translational cube of side-length 1/4th that of the passage. Note that
using a 6DOF robot would increase the search space of RRT while not changing
anything about the runtime of the other methods which use a fixed size roadmap.
For each iteration, we generate random start and goal queries in opposite sides
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(a) The starting position of every obstacle
in the environment

(b) A random movement of the blue obsta-
cles. Only the lowest obstacle switched to
other position.

Fig. 5: An illustration of the environment used for the experiments described
in Section 5.3. Two configurations of the translational cube robot are seen in
red. In every Iteration of the experiment each of the blue obstacles changed its
position with probability 1/2. Note that the bounding box is not illustrated for
the sake of clarity.

Query Method Update(s) Query (s) Total Pre-processing (min)

PRM + SPITE 0.13 0.12 0.25 0.95

PRM + Grid 1 0.14 0.15 0.28 40.3

PRM + Grid 2 0.39 0.14 0.52 7.6

LazyPRM - 1.84 1.84 -

RRT - 10.68 10.68 -

Table 2: Comparison of graph-based motion planning algorithms augmented for
modified environments and single-query motion planning algorithms in a mobile
robot scenario. Grid i indicates the grid method with cells of side length i, and
the best results are shown in green. Note that the best pre-processing time out
of the methods with a pre-processing phase is highlighted in lighter green.

of the environment, requiring each query to find a path through all three narrow
passages. All methods except RRT are provided the same C-space roadmap.
This roadmap is an induced subgraph of the 3D graph with resolution (i.e. edge
length 1/4) on ∼ 3400 nodes, and is guaranteed to contain a valid path through
all three walls regardless of obstacle locations and, therefore, from any sampled
start to any sampled goal configurations.

The results of the experiment are presented in Table 2.

Manipulator Experiment For this experiment we use a simulation of a 5DOF
UR5e in a shelf environment shown in Figure 1. The two-story shelf contains two
obstacles, a spray can and a box which are located at the center of either the
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Query Method Update(s) Query (s) Total Pre-processing (min)

PRM + SPITE 0.199 0.028 0.227 27.6

PRM + Grid 0.5 0.773 0.029 0.802 89.9

PRM + Grid 1 9.310 0.165 9.475 12.3

LazyPRM - 0.349 0.349 -

RRT - *0.016 *0.016 -

Table 3: Comparison of graph-based motion planning algorithms augmented for
modified environments and single-query motion planning algorithms for a UR5e
in a shelf environment. Grid i indicates the grid method with cells of side length i
meters, and the best results are shown in green. Note that the best pre-processing
time out of the methods with a pre-processing phase is highlighted in lighter
green, and runtimes hiding a success rate of only 53 percent are highlighted red.

top or bottom shelf with probability 1/2 each. The simulated environment size
is 6 × 6 × 4 meters, though out of these the volume reachable by the robot is
much smaller, and the physical setup is contained in a 2× 2×1 meter region. All
algorithms except for RRT were provided with a roadmap containing 1000 nodes
that was guaranteed to contain a path regardless of the obstacles’ positions. We
performed 100 iterations using a single start s and goal t pair, where the robot’s
endeffector is located at the back right corner of the upper shelf in configuration
s, and in the back left corner in configuration t. In this experiment we have
capped the runtime of RRT at 60 seconds.

The paths produced in this experiment specifically for the instances where
both objects were placed in the same shelf were validated using the physical
setup shown in Figure 1 and in the videos provided as supplemental material.

The results of the experiment are presented in Table 3. Notice that RRT had
a success rate of 53 percent.

5.4 Discussion

The first experiment, described in Section 5.2, demonstrates that for many “rea-
sonably” shaped obstacles SPITE outperforms the grid method in update times
while requiring a fraction of the preprocessing time. As the size of the obstacle
increases to a diameter more than half that of the environment we see in Table 1
a clear increase in update times due to the sheer number of nodes and edges
which are invalidated and re-validated at every iteration.

The most glaring detail about this experiment is the exponential increase
in pre-processing time that plagues the grid method, with a factor of close to
the expected 2d factor in the runtime with every refinement of the grid that is
translated to diminishing returns in update performance, resulting in a 29 hours
pre-processing time required to construct a data structure with 323 cells in order
to compete with our method. This is by far the largest environment of all of the
experiments and thus the one where this effect can be most easily seen.

∗53% success rate
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The table also shows us that while there is no clear trend in the relative dif-
ference between update times of SPITE and the grid method, there is an increase
in absolute difference as obstacles increase in size. Note that this result carries
over to the case of multiple updated obstacles as all methods will sequentially
perform the updates for each moved obstacle.

The second and third experiments, described in Section 5.3, showcase the
contribution of these faster updates when performing motion planning queries.

In the mobile robot experiment, described in the first part of Section 5.3
and summarized in Table 2, we see that unlike the dynamic roadmaps, RRT
and LazyPRM are both affected by the distance between the start and goal
configurations, as it directly increases the number of collision checks they need
to perform, and all of the methods that utilize a roadmap benefit greatly from
circumventing the need to perform pathfinding in C-space.

The small modifications which are due to the small obstacles and a small
and fat robot result in smaller scale updates and thus a lead to mild absolute
update time differences.

In the last experiment, described in the second part of Section 5.3 and sum-
marized in in Table 3, we see that as the robot becomes more complicated, e.g.
composed of more bodies, some of which are not fat, and as the obstacles oc-
cupy more of the reachable volume required to perform the motion planning
task, the runtime difference is strongly pronounced with our method requiring
∼ 60 percent less runtime than the grid method while requiring significantly
less pre-processing time. Notice that in this more complicated scenario even a
very coarse grid requires a substantial preprocessing time. We believe that the
extremely sharp decrease in query time is a result of large fractions of the edges
in the roadmap intersecting a few grid cells with side length 1.

LazyPRM does indeed perform much better due to the relatively short dis-
tances, a fact which is not enough to compensate for the difficulty of the pathfind-
ing task when the top shelf contains one of the objects thus causing RRT to not
be able to complete the task within the allotted 60 seconds.

6 Conclusion

In this paper, we introduced the SPITE supplementary method for dynamic
roadmaps and an approach to 3D volume approximation with a matching hier-
archical collision checking method for nodes and edges in C-space graphs. We
found our method outperforms the only previously known method in both up-
date and pre-processing times, and, when used in the context of motion planning
queries can lead to faster motion planning queries for mobile robots and manip-
ulators in modified environments than single-query algorithms.

For future work, we plan to focus on the 3D swept volume approximation,
adding lower-bound approximations and using oriented bounding boxes instead
of cigars, and add lazy planning heuristics to our method.
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